----------此文章。笔者按着tachyon官网教程进行安装并记录。
(本地安装tachyon具体解释:http://blog.csdn.net/u012587561/article/details/51039977 )
笔者执行环境:
- tachyon0.8.2
- hadoop2.7.1(笔者之后用hadoop2.6版本号,也建议用2.6版本号)
- ubuntu14.04(虚拟机共三台)
使用Hadoop 2.x
假设你正在使用2.x版本号的Hadoop集群,你应该不须要像上面那样在core-site.xml
文件里加入属性。但是,有些情况下可能会遇到java.io.IOException: No FileSystem for scheme: tachyon
的错误。比如。当YARN(与Hadoop相对)尝试去訪问Tachyon文件时。可能发生该错误。
假设遇到该错误。在core-site.xml
文件里加入这些属性,然后重新启动YARN。
fs.tachyon.impl tachyon.hadoop.TFS fs.tachyon-ft.impl tachyon.hadoop.TFSFT
编译Tachyonclient
为了使Tachyon和你的Hadoop版本号相相应,你必须又一次编译Tachyon Client的Jar包。指明你的Hadoop版本号。你能够在Tachyon文件夹下执行例如以下命令:
$ mvn install -Dhadoop.version=
<YOUR_HADOOP_VERSION>
版本号支持非常多不同的Hadoop发行版。比如:mvn install -Dhadoop.version=2.7.1
将会编译出适合Apache Hadoop 2.7.1版本号的Tachyon。 请訪问页面来获取其它发行版本号的支持信息。
编译成功后。新的TachyonclientJar包能够在例如以下文件夹中找到:
./clients/client/target/tachyon-client-0.8.2-jar-with-dependencies.jar
以下的内容将利用这个jar包进行展示。
配置Hadoop
为了能够使TachyonclientJar包对JobClient生效,你能够在
hadoop-env.sh
文件里将HADOOP_CLASSPATH
改动为:$ export HADOOP_CLASSPATH=//clients/client/target/tachyon-client-0.8.2-jar-with-dependencies.jar (当然,也能够将该jar包放在其它地方,改动成对应的路径)
该配置让代码能够使用Tachyon的URI来创建和提交作业。
分发TachyonclientJar包
为了让MapRedude作业能够在Tachyon上读写文件。TachyonclientJar包必须被分发到集群的全部节点上。
这使得TaskTracker和JobClient包括全部与Tachyon进行交互訪问所须要的可运行文件。
这篇文档介绍了分发Jar包的多种方式。
文档中建议通过使用命令行的-libjars
选项。使用分布式缓存来分发TachyonclientJar包。还有一种分发clientJar包的方式就是手动将其分发到Hadoop节点上。以下就是这两种主流方法的介绍:
1.使用-libjars命令行选项 你能够在使用hadoop jar ...
的时候加入-libjars命令行选项,指定/<PATH_TO_TACHYON>/core/client/target/tachyon-client-0.8.2-jar-with-dependencies.jar
为參数。
这条命令会把该Jar包放到Hadoop的DistributedCache中,使全部节点都能够訪问到。比如,以下的命令就是将Tachyon客户端Jar包加入到-libjars
选项中。
$ hadoop jar hadoop-examples-1.2.1.jar wordcount -libjars //core/client/target/tachyon-client-0.8.2-jar-with-dependencies.jar
2.手动将Jar包分发到全部节点 为了在每一个节点上安装Tachyon,你必须将客户端Jar包tachyon-client-0.8.2-jar-with-dependencies.jar
(位于/<PATH_TO_TACHYON>/core/client/target/
文件夹)放到每一个MapReduce节点的$HADOOP_HOME/lib
(由于版本号不同也可能是$HADOOP_HOME/share/hadoop/common/lib
)文件夹下,然后又一次启动全部的TaskTracker。
该方法要注意的是全部Jar包必须再次安装,由于每一个Jar包都更新到了最新版本号。还有一方面,当该Jar包已经在每一个节点上的时候。就没有必要使用-libjars
命令行选项了。
在本地模式的Tachyon上执行Hadoop wordcount
首先,编译对应Hadoop版本号的Tachyon:
$ mvn clean install -Dhadoop.version=
为了方便,我们如果是伪分布式的集群,通过执行例如以下命令启动:
$ cd$HADOOP_HOME$ ./bin/stop-all.sh$ ./bin/start-all.sh
配置Tachyon。将本地HDFS集群作为其底层存储系统。你须要改动conf/tachyon-env.sh
,增加例如以下语句:
export TACHYON_UNDERFS_ADDRESS=hdfs://localhost:9000
以本地模式启动Tachyon:
$ ./bin/tachyon-stop.sh all$ ./bin/tachyon-start.sh local
你能够在Tachyon中增加两个简单的文件来执行wordcount。在你的Tachyon文件夹中执行:
$ ./bin/tachyon tfs copyFromLocal LICENSE /wordcount/input.txt
该命令将LICENSE
文件拷贝到Tachyon的文件命名空间中,并指定其路径为/wordcount/input.txt
。
如今我们执行一个用于wordcount的MapReduce作业。
$ bin/hadoop jar hadoop-examples-1.2.1.jar wordcount -libjars //core/client/target/tachyon-core-client-0.8.2-jar-with-dependencies.jar -Dtachyon.user.file.understoragetype.default=SYNC_PERSIST tachyon://localhost:19998/wordcount/input.txt tachyon://localhost:19998/wordcount/output
hadoop jar share/hadoop/mapreduce/sources/hadoop-mapreduce-examples-2.7.1-sources.jar org.apache.hadoop.examples.WordCount -libjars /usr/local/tachyon/clients/client/target/tachyon-client-0.8.2-jar-with-dependencies.jar -Dtachyon.user.file.understoragetype.default=SYNC_PERSIST tachyon://master1:19998/wordcount/input.txt tachyon://master1:19998/wordcount/output
作业完毕后,wordcount的结果将存在Tachyon的/wordcount/output
文件夹下。你能够通过执行例如以下命令来查看结果文件:
$ ./bin/tachyon tfs ls /wordcount/output$ ./bin/tachyon tfs cat /wordcount/output/part-r-00000
你相同能够在底层存储系统HDFS namenode的WebUI上查看该文件。本地HDFS集群的WebUI在。
因为我保存在tachyon://master1:19998/wordcount/output中。故。。
例如以下
在分布式模式的Tachyon上执行Hadoop wordcount
但启动Tachyon有了很多其它的选项:
- bin/tachyon-start.sh all Mount #在启动前自己主动挂载TachyonWorker所使用的RamFS,然后启动TachyonMaster和全部TachyonWorker。因为直接使用mount命令,所以须要用户为root
- bin/tachyon-start.sh all SudoMount #在启动前自己主动挂载TachyonWorker所使用的RamFS。然后启动TachyonMaster和全部TachyonWorker。因为使用sudo mount命令,所以须要用户有sudo权限
- bin/tachyon-start.sh all NoMount #觉得RamFS已经挂载好,不运行挂载操作。仅仅启动TachyonMaster和全部TachyonWorker
因此。假设不想每次启动Tachyon都挂载一次RamFS。能够先使用命令 bin/tachyon-mount.sh Mount workers 或 bin/tachyon-mount.sh SudoMount workers 挂载好全部RamFS。然后使用 bin/tachyon-start.sh all NoMount 命令启动Tachyon。
hadoop jar share/hadoop/mapreduce/sources/hadoop-mapreduce-examples-2.7.1-sources.jar org.apache.hadoop.examples.WordCount -libjars /usr/local/tachyon/clients/client/target/tachyon-client-0.8.2-jar-with-dependencies.jar -Dtachyon.user.file.understoragetype.default=SYNC_PERSIST /in1 /tmp/wordcount[图片]
。。
)
tachyon/tachyon-env.sh: line 83: export: 'hdfs://master1:9000' : not a valid identifier Killed 0 processes on worker1此处是conf/tachyon-env.sh文件出错。应该是你的worker的路径配置错误。如笔者原先是hdfs://master1:9000, 发生如上错误。改动成 TACHYON_UNDERFS_ADDRESS=hdfs:// :9000 即成功。(hadoop为用户组。master1是username,笔者是虚拟机中配置三台节点)
输入 ssh-add就可以
假设还未能进行无password远程登陆。那就又一次安装ssh,然后将公钥(id_rsa.pub)写入authorized_keys(无password连接列表)。
所有都写进去,然后分别拷贝到对应位置,即能够无password登录。
比方:将A节点的id_rsa.pub的内容复制,并写到B中的authorized_keys文件里,此时A能够无password连接A,而B连接A须要password。由于A的同意列表中没有B)
相互复制写进文本后,就可以相互无password连接。
至于怎样安装ssh,请移步到笔者的hadoop安装的步骤博客中,里面有具体步骤描写。